
ELSWIER Journal of Geometry and Physics 25 ( 1998) 9 l-l 03 

IOURNAL OF 

GEOMETRYAND 
PHYSICS 

Topologically nontrivial sectors 
of the Maxwell field theory on algebraic curves 

France Ferrari a-‘. ’ 
’ Dipartimenro di Fisicu, ZJni\jersitb di Trmto, 3X050 Povo (TN), Itu!\ 

h LPTHE (Luhoraroire associP No. 280 au CNRS). UniversitP Pierre et Marie Curie - Puris 1’1. 

Univrrsitr Denis Didernt - Puris VII. Boite 126. Tour 16. I” Ptugc, 4 place Jussiru. 

F-75252 Puris Cedex 05. Frunce 

Received IO July 1996: received in revised form 5 March 1997 

Abstract 

In this paper a large family of nondegenerate metrics is derived on general algebraic curves. In this 
way, it is possible to treat many differential equations arising in quantum mechanics and field theories 
on Riemann surfaces as differential equations on the complex sphere. The case of the Maxwell 
field theories on curves with Z, group of automorphisms is studied in details. These curves are 
particularly important because they cover the entire moduli space spanned by the Riemann surfaces 
of genus x ( 2. All the classical solutions of the Maxwell equations are explicitly constructed. 
Also the examples of the scalar fields and of an electron immersed in a constant magnetic held will 
be briefly investigated. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Two-dimensional gauge field theories on Riemann surfaces have recently been considered 
by various authors [ 1,2]. The abelian case is particularly interesting because of the presence 
of topologically nontrivial gauge configurations (31. which are relevant in string theories 
[4], in topological quantum mechanics [5] and in the theory of the quantum Hall effect 
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(QHE) [6,7]. These configurations have been derived in [7] for particular metrics and, more 
recently, in [8] for any metric. In this paper, we consider the abelian gauge field theory, or 
Maxwell field theory, on algebraic curves [ 131. The latter provide an explicit representation 
of Riemann surfaces as n-sheeted coverings of the complex sphere. Using the formalism 
of algebraic curves, physically relevant results have already been obtained in string theory 
[ 1 O-1 21. In our case, the advantage of working on algebraic curves is that any differential 
equation defined on a Riemann surface, like those arising for instance in quantum field theory 
or quantum mechanics, can be rewritten as a differential equation on the sphere. Moreover, 
at least in the case of algebraic curves with Z, symmetry group of automorphisms, the 
moduli are explicitly given by the branch points and enter in the equation of the curve as 
simple complex parameters. 

However, the analytic solution of the physically relevant field or wave equations on 
algebraic curves remains very difficult. Until now, only the b - c systems have been fully 
solved using the operator formalism of Refs. [ 10,l 11. The Maxwell field theory is more 
complicated because it is not conformally invariant and, as a consequence, the multivalued 
metric tensor is coupled to the fields. Unfortunately, one cannot exploit on algebraic curves 
the powerful methods of the theory of theta functions [9]. As a matter of fact, the existing 
formulas of the prime form are too complicated and unexplicit for physical calculations so 
that it is not possible to construct the topologically nontrivial gauge configurations as in 
[8]. On the other side, using the so-called CBM metric of [7] there is no need of the prime 
form, but the expression of the canonically normalized differentials is required, which is 
not known (in [ 141 these differentials have been constructed up to a theta constant). 

To circumvent these difficulties, we restrict ourselves to algebraic curves with Z, group 
of automorphisms. This is an important class of curves which includes the hyperelliptic 
ones and covers the entire moduli space spanned by the Riemann surfaces of genus g 5 
2. We show that a particular feature of the Z, symmetric curves is the existence of a 
big family of nondegenerate metrics which are singlevalued on CPt . The latter property 
greatly simplifies the calculations and allows the derivation of all the classical solutions 
of the Maxwell field theory. The topologically nontrivial gauge fields obtained here have 
a relatively simple expression, similar to their analogues on the complex sphere and thus 
can provide new insights in two-dimensional quantum mechanics and QHE on a manifold. 
The above metrics are also generalized to arbitrary algebraic curves, but in this case they 
are no longer single-valued and we are not able to solve the Maxwell equations without 
introducing the prime form. Nevertheless, it is still possible to write in terms of multi-valued 
differential operators on the sphere the equations of motion of particles living on Riemann 
surfaces. Besides the Maxwell equations, concrete examples briefly treated here are the 
equations of the scalar fields on general algebraic curves and the Hamiltonian of a massive 
electron immersed in a constant magnetic field. 

The material presented in this paper is divided as follows. In Section 2 the Maxwell field 
theory on Riemann surfaces and algebraic curves is introduced. The gauge fields are de- 
composed in their exact, coexact and harmonic components using the Hodge decomposition 
theorem and the harmonic components are explicitly derived. In Section 3 we construct non- 
degenerate metrics on the Z, algebraic curves. For some of these metrics the corresponding 
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Ricci tensor is computed. We check using the Poincare-Lelong equation [ 131 that different 
curvature tensors yield the same Euler characteristics as expected. In Section 4 the topologi- 
tally nontrivial solutions of the Maxwell equations are derived. We verify that the magnetic 
fluxes generated by these gauge fields satisfy the Dirac quantization condition. Finally. in 
the conclusions (Section 5) we discuss the possible applications and generalizations of our 
results. In particular, it is shown how to generalize the metrics of Section 3 to any aftine 
algebraic curve. Moreover, the equations of motion of the scalar fields on any algebraic 
curve are treated with some details and the Hamiltonian of a massive electron immersed in 
a constant magnetic field is explicitly constructed. 

2. The Maxwell field theory on algebraic curves 

In this paper we consider the Maxwell held theory on a Riemann surface C of genus 
h > I and with Z, group of symmetry. The action is given by 

where F,, = a,A, - &A,, @, v = 1.2 and g,, is a conformally flat metric with deter- 
minant g. We choose on C complex coordinates 6 = 6 ’ + it2 and f = 4 ’ - it’ so that the 
components of the field strength ad of the metric become, respectively. 

1 
Fc7 = -F& = -7F12 

21 

and 

l+c = q_E = :& g(E = g?T = 0. 

Moreover, the volume form in complex coordinates is given by d2tg6F = d< ’ A dc’fi, 

where d2( = i d‘ A d{. Accordingly, the classical equations of motion of the Maxwell 
field theory take the following form: 

il,[~E+A, - +A$] = 0, 

~-[g~E(~,At - a,A[)] = 0 6 

with gcz being the inverse metric: gtEg6F = I. 

(1) 

(2) 

Let us decompose the gauge fields using the Hodge decomposition 

At = 86’~ + +p + A;” + A:. A? = -Qp + “p + A? + A;. (3) 

The coexact and exact components are expressed using the two scalar fields cp and p, re- 
spectively, where cp is purely imaginary, while p is purely real. A:” and A? take into 



94 F: Ferruri/Journal of Geometry and Physics 25 (1998) 91-103 

account the holomorphic differentials A:; and A;;, i = 1, . . . , h, while the A’ , A!- rep- 
6 6 

resent topologically nontrivial gauge configurations corresponding to nonvanishing values 
of the first Chern class. The former satisfy the relations: 

while the latter are built in such a way that 

where 0 is a constant representing the total magnetic flux associated with the fields A:, A: 

and A = i SC d2{g5F denotes the area of the Riemann surface. 
At this point, we suppose that C has a 2, group of automorphisms and we represent it 

explicitly as an algebraic curve determined by the vanishing of Weierstrass polynomials of 
the following kind: 

,lwl 

y” = l-I (z - cl;). (4) 

In (4), z and 7 denote a set of complex variables describing the sphere CPl and n, m are 
integers. In this formalism z can be viewed as a mapping z : < E C -+ CPI Here it will 
be always understood that z is a function of <, i.e. z = z(t), unless conversely stated. For 
our purposes, it will also be convenient to regard CPI as the compactified complex plane, 
i.e. CPI = C U (co]. As usual, we cover CPl with two open sets UI and U2 containing 
the points z = 0 and z = 00, respectively. The local coordinates z’ on Uz is related to z by 
the conformal transformation: z’ = l/z. The coefficients Ui appearing in (4) are complex 
parameters denoting the branch points of the curve. It is easy to check that the point at infinity 
z = co is not a branch point. Solving Eq. (4) with respect to y, we obtain a multivalued 
function y(z), whose branches will be denoted with symbol y(‘)(z), 1 = 0, . . . , n - 1. A 
generic tensor T(z, 2) on the algebraic curve can be multivalued on the complex sphere due 
to its dependence on y(‘)(z). Its branches will be denoted as follows: 

T(‘)(x. 7) = T(z z. _v(‘)(z), Y”‘(2)). 1 . (3 

a “Ill 

Fig. I. A possible set of branch cuts on the complex sphere for the Z, symmetric algebry curves. The cuts 
appear symmetrically on the sheets composing the curve. 
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To construct a system of branch lines which is consistent with the multi-valuedness of the 
function y(z), we group the branch points in m different sets li = (a(;_ ~)~+t, . . , U/r! ). with 
i = I,..., m. The branch points in a given set Zi are connected together by branch lines as 
shown in Fig. I. As a convention, going around a branch point clockwise (counterclockwise) 
on the jth sheet along a small circle surrounding the point, one encounters the (.j + I )th 
((j - I )th) sheet when crossing a branch line, where j = 0. . II - I mod II. 

The genus of the Riemann surface (4) is 

h = I - II + i(nm(n - I)). (6) 

In order to describe the topologically nontrivial solutions of the Maxwell tield theory on 
the algebraic curves (4) explicitly. the following divisors are necessary: ’ 

Pl,n ,I- I 
[dzJ=(n_l)Cti,>-22CXj. 

/>=I j=O 
,,,?I iI - I (7) 

[v] = CO,, - m &. 
,‘- I j=O 

In (7) the symbol Ooj denotes the projection of the point ; = 3c on the jth sheet. Exploit- 
ing the above divisors, it is easy to see that the holomorphic differentials AFT and A;: 

correspond to linear combinations of the following holomorphic differentials: 

(8) 

where for in > 1: 

j = I...., (n-I)m-km-l. k=O,....n-2. 

and for m = I : 

j= I....,rz-k-2. k = 0.. , II - 3. 

The calculation of the topologically nontrivial solutions A: will be the subject of 
Section 3. 

3. Metric tensors on algebraic curves 

For the calculation of the topologically nontrivial configurations the knowledge of at 
least one nondegenerate metric tensor on C is necessary. A simple class of conformally flat 
metrics is provided by tensors of the kind: 

’ These divisors can be computed using the methods of Refs. [I I. 121. 
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where f(z, y) is a rational function of z and y and f(z, y) its complex conjugate. Clearly, 
the parameter CI can be any real number without introducing further branches on CPt . For 
a! = ((n - 1)m - 2)/m and f(z, y) = y(z), we have the nondegenerate metric 

g2,7: dz dZ = ___ dzdz [l +yY]“. 
(yB"-' 

(10) 

The curvature scalar R2 and the curvature two-form R 2.Li [ 151 corresponding to the above 
conformally flat metric are, respectively, given by 

R2 = -;, 
azya5y 

R2.z = -2~ ,, + yu,2. 

Another interesting example of nondegenerate metric is provided by 

g3._? dz dZ = L dz dz [ 1 + ZZlfi 
(yV)“-’ 

(11) 

(12) 

for /3 = (n - I)m - 2. The curvature scalar and the curvature two-form corresponding to 
this metric have a very simple form: 

R3 = -;, R3.i = - 28 
(1 + z2)2 . 

(13) 

Now we verify that the above metric tensors yield the exact Euler characteristic X. On a 
Riemann surface C of genus h, represented as an algebraic curve, X is defined as follows: 

1 
X=z 

s 
d2z(Qg,R = 2 - 2h, 

c 
(14) 

where R is the curvature scalar. We recall at this point that the integral of a density Ly(! (z, 7) 
on an algebraic curve C can be rewritten as a discrete sum of integrals over CPt : 

(15) 

Eq. (15) can be rigorously proved by means of the Poicare-Lelong equation [ 131. Putting 
LF.k(zZ) = (1/4rr)g,R3 in Eq. (15) we obtain for the Euler characteristic: 

n 
X=-z s d2z 28 = -/In. 

(1 + 22)2 
CPI 

(16) 

To derive the right-hand side of (16) we have used the fact that the integral over CPt is 
proportional to the Euler characteristic of the complex sphere: 

(17) 

Therefore, Eq. (16) yields X = -n/I = 2n - nm(n - 1). Comparing this value of X with 
Eq. (6) which gives the genus of C in terms of Iz and m, it is easy to see that X = 2 - 2g as 
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expected. The computation of the Euler characteristic starting from the Ricci tensor R~.+F 
of Eq. (11) can be performed in an analogous way considering y as the independent variable 
in Eq. (4), so that z(y) becomes a multi-valued function with nm branches over CPI 

Let us finally notice that we can construct other metric tensors on an algebraic curve 
which are not of the form (9). For instance the tensor 

(18) 

yields a nondegenerate metric, as it is easy to check exploiting the divisors (7). Moreover, all 
the metric tensors given above are characterized by the fact that they are not multi-valued 
on CP,. In fact, they depend on y only through the modulus of this function, which is 
branch independent. Nondegenerate metrics which are also multi-valued can be for instance 
obtained multiplying Eqs. (lo), (12) and (18) by integer powers of the factor y/y + T/v or 
by considering more complicated forms of the functions f’(z. y) in Eq. (9) 

4. Solitonic sectors of the Maxwell field theory 

At this point, we are ready to derive the fields A: and Ai. On the algebraic curve, this is 

equivalent to solve the equation: 

F,: dz A d?_ = Ag,: dz A di. (19) 

The difficulty of computing A: and A$ explicitly strongly depends on the choice of the 

metric g,z. In the formalism of theta functions, Eq. (19) can be easily solved in the canonical 
H-metric (CBM) of [7]. Unfortunately, it is not possible to construct this metric on algebraic 
curves, since the expression of the period matrix in terms of the branch points is not known. 
To simplify our calculations, we choose single-valued metrics on CPl as those in Eqs. ( 10). 
( 12) and (18). To solve Eq. (19), we first define the follwing Green function: 

G(z, w) = --&log 
Iz - WI2 

(1 + z?)(l + WW) I 

Denoting with J(z, 2) an external single-valued scalar current on CPl, it is possible to show 
by means of Eq. (15) that, if the metric is single-valued. G(z. w) satisfies the following 
relation: 

a, + s d*wC~‘)G(wG’). iAO)J(W’). W$‘Ng,,,ir; 
c 

J(z, 2) =-- 
2 

g_- + v,, ._Z 4Trn s d*wJ(w, W)g,,,,, (20) 

where yZ: dz d: = dz dZ/( 1 + ~1)~. 
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Fig. 2. A possible covering of the curve C in two sets C,v and Cs. Only the part of the contour y which lies 
on the ith sheet is showed. 

Besides the Green function G(z, w), we also introduce a gauge field Aiph, a = z, 2, 
defined in this way: 

A A:ph = ---aa, log( 1 + ~7). 
477n 

Asph = &a,log(~ + zz). : 

It is easy to check that the relation 

(21) 

(22) 

is satisfied over all the algebraic curve C apart from the points coo, . , c-a,_ 1. At those 
points, in fact, a S-function concentrated in n = co appears in the right-hand side of (22). 
The problem of the appearance of 6 functions is solved here as in the case of the Wu-Yang 
monopoles on the sphere by splitting the algebraic curve into two sets Cs and CN. The 
former should contain all the projections of the point z = 0 but not those of the point z = co, 
while for CN the converse is true. Of course, there is a great arbitrainess in choosing these 
sets. To fix the ideas, we will define them as the two sets obtained by cutting the algebraic 
curve along the contour y shown in Fig. 2. Thus Cs encloses the projections 00 . . . , O,_ 1 
of the point z = 0 and all the branch points apart from unm. Consequently, EN includes the 
points 000, . . . , cm,_1 and the branch point an,,, The contour of Fig. 2 is valid also in the 
case in which z = 0 is a branch point. In fact we can always put al = 0, without any loss 
of generality. Cs and EN are not isomorphic to C, but this way of covering the algebraic 
curve will be sufficient for our purposes as we will show below. Indeed, let us write the 
solution of Eq. (19) on Cs: 

d”w&G(z, w)g,,, + A;ph 1 , 
d*w&G(z, w)gU,c + Agph 

1 
. 

Exploiting Eqs. (20) and (22), it turns out that 

(a,@ - +A;) dz A d?: = $R;- dZ A dz . 

(23) 

(24) 

-J 

(25) 
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as desired. Analogous expressions of the solutions of Eq. (19) can be written on C,v in 
coordinates z’ = 1 /z and 7’ = 1 /Z: 

(26) 

where 

jpyh = --&a:( log(1 + z’,‘), i:yh = &“_. log(l + z’,‘). 
; 

As for the fields Af and A:, it is easy to prove that the following relation is satisfied: 

(29) 

Eqs. (23). (24) and (26),(27) show the reasons for which we only need two sets to cover 
the Riemann surface C. First of all, the gauge fields At and AZ with CI = :, 7, are single- 
valued on C. Secondly, they are everywhere not singular, apart from the projections on the 
algebraic curve of the points z, = 0. cc. As a consequence, the behaviour of the gauge tields 
At.%’ is not affected by the presence of the branch points and the splitting of C into two 
sets CN and C,s is justified. 

To be consistent, both fields A: and Ai should describe the same magnetic field. Indeed. 
far from the points z = 0 and z = co, where it is possible to use both coordinates z(t) and 
z’(c), one can see that the fields A!.’ are related by a gauge transformation: 

A!, d,-’ = A: dz’ + +A dz’. A?, d;:’ = A? d:’ + &A d:’ , ; (30) 

where, using local polar coordinates z’ = (1 /p’)e-“‘, we have that A = @H’/Zrn. The 
transformations (30) consists in a U (I ) gauge transformation with group element U (I’. Z’) 
given by 

(-J = eiA = ei(@H’/7rn). (31) 

Since the fields A: and Ai differ by an exact differential, the corresponding field strength 
Fz, is globally defined on C and we can compute the total magnetic flux associated to the 
gauge field configurations of Eqs. (23) (24) and (26) (27). Using Eqs. (25) and (29) we 
have 

1 d2zF’: = / d2zF;+ /- d’z’F;:, = @ 

z Es En 

as desired, where Ff, = i&A& - a,Al and I = N. S on CN,s. Still we have to check that 
the group element ~detined h Eq. (3 1) is single-valued when transported along the path y 
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Fig. 3. An alternative form of the two sets EN and Es. Cs is disconnected in n pieces lying on the different 
sheets. In the figure only the piece belonging to the ith sheet has been given. 

and the nontrivial homology cycles of X. When U is transported N times along v, the angle 
0’ undergoes the shift: 8’ + 8’ + 2nnN. The factor 12 is due to the fact that the contour 
y encircles all the projections of the point z = cc on the II different sheets composing 
the algebraic curve. Thus, in order to ensure the single-valuedness of U, the following 
condition on the total flux @ should be imposed: @J = 2rrk, with k = 0, &l, f2, . . . As a 
consequence, the solutions of Eq. (19) provided by the gauge field configurations in (23), 
(24) and (26), (27) satisfy the relation: 

2nk = s d=z Fzi 
c 

for integer values of k. As expected, Eq. (32) is exactly the Dirac quantization condition 
of the magnetic flux. This result does not depend on the form of the contour y. In fact, 
a curve which encircles all the projections of the points z = 0 and z = cc has either to 
cross at least n branch lines as in Fig. 2 or to be of the form given in Fig. 3. In both cases, 
the total shift in the angle 8’ has an n factor in front which does not allow for fractional 
values of k in Eq. (32). Finally, the gauge fields defined in Eqs. (23), (24) and (26), (27) 
are single-valued on CPt, so that no problem arises when they are transported along the 
homology cycles. 

5. Conclusions 

In Eqs. (8) and (23)-(27) we have computed all the nontrivial solutions of the Maxwell 
equations on a 2, symmetric algebraic curve. The gauge fields configurations (23), (24) 
and (26), (27) have a simple form, very similar to that of their counterparts on the complex 
sphere. Using the above gauge potentials it is possible to write explicitly the Hamiltonian 
H of an electron of mass m in the presence of a constant magnetic field B perpendicular to 
.ZY. Remembering that B = @/A, we have on CN,S: 

H = [2&m](Pz - A;*‘)(P z - A;*“) + [0/2mA] (33) 
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with P, = -i&, IX = z, 2. g”= is the inverse of one of the single-valued metrics given in 
Section 3. The degenerate ground state of H is given by 

where cl/o satisfies the relation: %_tPu = 0. due to the Dirac quantization condition of 
the magnetic flux and the single-valuedness of At,.‘, *N,.y is a well-defined quantum 
mechanical state. In particular, it is periodic along the homology cycles. The metrics given 
in Section 3 can be easily extended to any algebraic curve with Weierstrass polynomial: 

where the P;(z) are polynomials in z. In this case. the metrics (9) takes the form: 

with F,.(,-. y) = $F(z, y). The values of the parameter LY depend on the form of the 
polynomial (34) and of the function f(z, v). To determine CX, one has to derive the divisors 
of dz, .V and FJ as in Eq. (7). For a large class of algebraic curves, such divisors can be 
found in [ 1 11. Analogously, the metric ( 18) becomes on a general algebraic curve: 

elF,I’ 
$... dz d? = 

elF,I’ _ 1 
[ 1 + zZIB dz d. (35) 

for suitable values of p. In this way the Lagrangians of many field theories can be explic- 
itly written on algebraic curves. For instance, let us write the action for the scalar fields 

cp(z. 2; y’(z), J>‘(Z)) with mass P: 

(36) 

Here h 1, h2 represent real parameters and d; and d= are total derivatives with respect to the 
variables ;: and 2. Total derivatives are used to remember that the fields 40 depend on 17. ? 
also through the functions v(z), v(z). Deriving the action (36) with respect to the field cp in 
a given branch 1, we find the equation of motion of the scalar fields: 

(37) 

Locally and far from the branch points, it is possible to solve (37) with the standard methods 
of the theory of partial differential equations on the complex plane. Any local solution 
derived in this way is in general multi-valued and needs to be analytically continued in 
order to extend it over the whole algebraic curve. Despite of the difficulties that may arise 
in the analytic continuation, the possibility of transforming differential equations on a 
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Riemann surface in differential equations on the sphere is remarkable. Moreover, numerical 
calculations are allowed due to the explicitness which is intrinsic in the representation of 
Riemann surfaces in terms n-sheeted coverings of the complex sphere. 
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